Twistor Solutions of the dKP Equation ∗

نویسندگان

  • Francisco Guil
  • Manuel Mañas
  • Luis Mart́ınez Alonso
چکیده

The factorization problem for the group of canonical transformations close to the identity and the corresponding twistor equations for an ample family of canonical variables are considered. A method to deal with these reductions is developed for the construction classes of nontrivial solutions of the dKP equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 On Twistor Solutions of the dKP Equation ∗

The factorization problem for the group of canonical transformations close to the identity and the corresponding twistor equations for an ample family of canonical variables are considered. A method to deal with these reductions is developed for the construction classes of nontrivial solutions of the dKP equation.

متن کامل

Einstein–Weyl geometry, the dKP equation and twistor theory

It is shown that Einstein–Weyl (EW) equations in 2+1 dimensions contain the dispersionless Kadomtsev–Petviashvili (dKP) equation as a special case: If an EW structure admits a constant weighted vector then it is locally given by h = dy2−4dxdt−4udt2, ν = −4uxdt, where u = u(x, y, t) satisfies the dKP equation (ut − uux)x = uyy. Linearised solutions to the dKP equation are shown to give rise to f...

متن کامل

F eb 2 00 4 A class of Einstein – Weyl spaces associated to an integrable system of hydrodynamic type

A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type. Abstract HyperCR Einstein–Weyl equations in 2+1 dimensions reduce to a pair of quasi-linear PDEs of hydrodynamic type. All solutions to this hydrodynamic system can be in principle constructed from a twistor correspondence, thus establishing the integrability. Simple examples of solutions including the hydr...

متن کامل

Shock formation in the dispersionless Kadomtsev-Petviashvili equation

The dispersionless Kadomtsev-Petviashvili (dKP) equation (ut + uux)x = uyy is one of the simplest nonlinear wave equations describing twodimensional shocks. To solve the dKP equation we use a coordinate transformation inspired by the method of characteristics for the one-dimensional Hopf equation ut + uux = 0. We show numerically that the solutions to the transformed equation develops singulari...

متن کامل

Se p 20 02 Einstein – Weyl spaces and dispersionless Kadomtsev – Petviashvili equation from Painlevé I and II .

We present two constructions of new solutions to the dispersionless KP (dKP) equation arising from the first two Painlevé transcendents. The first construction is a hodograph transformation based on Einstein–Weyl geometry, the generalised Nahm's equation and the isomonodromy problem. The second construction, motivated by the first, is a direct characterisation of solutions to dKP which are cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008